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Abstract-Melting of ice in porous media has been investigated experimentally and analytically for a 
horizontal and vertical cylindrical capsule. Quantitative results of the temperature distribution and solid- 
liquid interface motion and shape were obtained for inward melting with different size and types of spherical 
beads used as the porous media. Predictions from an analysis which considers conduction as the only mode 
of heat transfer in both the solid and liquid were compared to experimental data to show where natural 
convection becomes significant. It was found that the melting rate was augmented by natural convection 
in the liquid. For large differences in the thermal conductivity of the phase-change material and porous 
medium (e.g. water and aluminum), the effective thermal conductivity of the system was not predicted 
accurately by the model used, resulting in a further discrepancy between data and predictions. Moreover, 
the assumption of local temperature equilibrium between the void constituent and the porous medium 

becomes invalid for a water-aluminum bead system. 

INTRODUCTION 

IN RECENT years, the heat transfer processes which 
occur during solid-liquid phase change have received 
considerable attention due to a wide range of geo- 
physical and engineering applications, and some up- 
to-date reviews are available [ 141. Solid-liquid phase 
change in porous media has been identified as an area 
of interest for practical applications [5]. However, 
relatively little attention has been given to the problem 
because of the inherent complexity encountered when 
dealing with porous media coupled with phase trans- 
formation and motion of the interface. 

Goldstein and Reid [6] have investigated melting 
(or freezing) in water-saturated, porous media in the 
presence of a seepage flow. Using techniques of com- 
plex variable theory, the energy equation in the 
unfrozen region was solved for without knowing the 
shape of the frozen region. The nonlinear interfacial 
energy balance was transformed into a nonlinear 
integro-differential equation which was then linear- 
ized by solving it over short time increments until the 
frozen region either vanishes or reaches its equilibrium 
shape. Okada and Fukumoto [7] have studied melting 
of frozen, porous media around a horizontal tube 
and accounted for natural convection in the melt. 
Momentum equations, which were based on Darcy’s 
law for fluid flow in porous media, together with an 
energy equation, were solved numerically using an 
implicit finite-difference scheme ; the results were com- 
pared to experimental data and fair agreement was 
reported. 

Due to the limited amount of analytical and exper- 
imental work on phase-change heat transfer in liquid- 
saturated, porous media reported to date, the various 

effects are not fully understood and a number of criti- 
cal issues remain unresolved. These effects of natural 
convection in the liquid, porosity of the medium, 
differences in the thermophysical properties of the 
porous medium and phase-change material (PCM), 
subcooling of the solid PCM and superheating of the 
liquid PCM have not been systematically studied. 

The purpose of this paper is to report experimental 
data and to examine if natural convection during melt- 
ing of frozen porous media is an important mode of 
heat transfer. To this end, melting experiments have 
been performed in both a vertical and a horizontal 
cylindrical capsule filled with different size glass and 
aluminum beads and with ice (water) as the PCM. 
Comparison of experimental data with predictions 
based on a one-dimensional model in which heat is 
transferred only by conduction is used to show when 
natural convection becomes significant. 

EXPERIMENTS 

Experimental apparatus 

Melting experiments with frozen porous media were 
performed in the cylindrical capsule shown in Fig. 1. 
The capsule consists of a brass cylinder (73.0 mm ID, 
1.07 mm wall thickness and 158.8 mm long) with a 
bottom and top cap made of acrylic plastic. The cap- 
sule could be operated with the axis both in vertical 
and horizontal orientations. The thermal conductivity 
of acrylic is less than the thermal conductivity of the 
PCM and porous medium which helps to reduce end 
effects. The heat source/sink consisted of two copper 
tubes (6.35 mm OD, 4.76 mm ID) wrapped and sold- 
ered around the outside of the brass cylinder with the 
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NOMENCLATURE 

fi 
specific heat 
bead diameter [mm] 

Fo Fourier number, u,,t/R’ 

H axial length of the test section 
Ahr latent heat-of-fusion 
k thermal conductivity 

L liquid thickness 
I radius 

rI radial interface position 

R outside radius of test section 
Ste Stefan number for melting, c,( Tr - T,,,)/Ahr 

t time 
T temperature 
Z axial direction. 

Greek symbols 
tl thermal diffusivity, k/pc 

Y dimensionless axial distance, z/H 

6 dimensionless interface position, r,/R 

r dimensionless liquid thickness, L/R 

0 dimensionless temperature, 

(T- T,)/(Tr- T,) 
5 dimensionless radius, r/R 

P density 
dimensionless time, FoSte 

i porosity. 

Subscripts 
f fusion state 

1 
initial state 
liquid-phase properties 

lm effective liquid properties 
m porous medium properties 
S solid-phase properties 

sm effective solid properties 
W wall. 

two tube inlets each at opposite ends of the cylinder. 
In this manner, the double-wrapped tubing acts like 
a counter-flow heat exchanger to give a uniform wall 
temperature. The test cell was insulated using Styro- 
foam fitted around the heat exchanger and caps. A 
detailed description of the apparatus is given else- 
where [8]. 

Section A-A 

FIG. 1. Schematic of test cell ; l-test section ; 2-acrylic end 
caps ; 3*opper heat exchanger ; 4-thermocouple rake ; 
5-thermocouple position on rakes ; &fill tube ; 7-over- 

flow tube ; 8-brass cylinder. 

Measurement of the temperature distribution and 
wall temperature was made respectively by four ther- 
mocouple rakes and five thermocouples placed on the 
outside of the brass cylinder using thermal epoxy. 
Radial and azimuthal position of the rakes are shown 
in Fig. 1. This rake arrangement allows temperature 
measurements to be affected little by a rake at a larger 
radius. The copper-constantan thermocouples had a 
wire diameter of 0.13 mm, and the bead was placed 
approximately 0.5 mm away from the rake and 
directed radially outward. 

Test materials 
Two different types of spherical beads were used 

as the porous media. The soda-lime glass beads had 
diameters of 1.59, 2.89 and 6.0 mm. The properties 
used were for a soda-lime glass with a chemical com- 
position as close as could be obtained to the chemical 
composition of the glass beads used in this study. The 
aluminum was commercially pure (Type 1100) with a 
bead diameter of 3.18 mm. Again, the properties were 
for an aluminum of chemical composition as close as 
possible to the aluminum bead used in this study [8]. 
The PCM was once-distilled, degasified water. 

The porosity (volume of voids over the total vol- 
ume) was determined in two ways using a separate 
cylindrical container. The porosity of the aluminum 
bead was 0.39 and for the largest glass bead size was 
0.38 (0.36 for the smaller sizes). The porosity for all 
sizes of spherical beads should be equal, assuming the 
same packing arrangement. The discrepancy is due to 
the roundness of the beads and increase in porosity 
near the wall of the container which is more significant 
for the larger bead size [9]. 



Melting of frozen, porous media 1945 

Test procedure and data reduction 
In preparing for an experiment, the test cell was first 

filled with the porous media. The balls were settled to 
obtain approximately the same conditions for each 
test. After degasification, the water was carefully 
siphoned into the test cell to ensure that no air is 
trapped in the matrix and to prevent air from mixing 
with the water. A mixture of alcohol and water was 
circulated through the heat exchanger from two con- 
stant-temperature baths to solidify the liquid. After 
complete solidification and after uniform initial 
conditions were established, melting of the ice was 
initiated. 

The thermocouple output was read at a given inter- 
val of time using a data logger. From these tem- 
peratures, the temperature distributions and solid- 
liquid interface position as a function of time were 
determined. The time at which the interface reaches 
an arbitrary thermocouple, i.e. radial position, is 
determined as the time when the thermocouple tem- 
perature is markedly different between two con- 
secutive temperature readings. Since the temperature 
readings are taken at finite intervals, this introduces 
some error in the experimental determination of the 
solid-liquid interface motion and position. The inter- 
face position could not be photographed and the flow 
structure in the melt could not be visualized due to 
the scattering of light by the porous medium. 

ANALYSIS 

Assumptions and model equations 
The physical system modeled for melting consists 

of a cylinder, closed at the ends, filled uniformly with 
spheres (porous media) and solid PCM. Initially, the 
system is at a uniform temperature less than or equal 
to the fusion temperature T, < T,. At time t 2 0, a 
uniform temperature is imposed on the inside of the 
cylinder wall which is greater than the fusion tem- 
perature, T, > TP This initiates the melting process 
with the fusion front moving radially inward. 

The following assumptions are made in the analy- 

sis : 

(1) 
(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

The porous media is isotropic and homogeneous. 

Physical properties are independent of tem- 
perature. 
Overall volume change due to phase change is 
negligible. 
Heat conduction is the only mode of heat transfer 
in both the solid and the liquid (i.e. natural con- 

vection is absent). 
The solid-liquid interface is clearly defined, i.e. 
the PCM has a well-defined fusion temperature. 
The local temperatures of the phase in the voids 
and porous medium are the same. 
Porosity is constant. 

With the preceding assumptions, the resulting 
dimensionless energy equations for the solid and 

liquid are, respectively 

(1) 

(2) 

The initial, boundary and interface conditions for 
melting are : 

f3,, = 0, for r < 0 (3a) 

13,~ = 0, = 0 at < = 1 (3b) 

0,, = 0,, = 1 at 5 = 6 (3c) 

4 -_= - $$ at 5 = 6 (3d) 

de 
?=O at<=O. 

at 

Before the model equations can be solved, a viable 
means of determining the thermophysical properties 
of the porous media is needed. Generally, there can 
be any combination of solids and fluids when dealing 
with porous media. As such, an effective or average 
set of properties is used which are based on the void 
fraction (porosity) of each constituent. Specifically, 
the effective thermal capacitance (density times 
specific heat) is needed, which results in the follow- 
ing equation for the solid [lo] : 

wml = WInU - 4) + ws4 (4) 

where sm, m and s refer respectively to the solid influ- 
enced by the porous media, the porous medium and 
the solid phase. The equation for the liquid is deter- 
mined by simply replacing sm and s by lm and 1, 
respectively. 

The thermal conductivity is more complex because 
it depends on the geometry, heat flow direction and 
volume of each constituent. Various effective thermal 
conductivity models based on geometrical consider- 
ations or empirical results have been proposed [lo]. 
Also, Veinberg [l l] derived an equation which he 
claimed to be universally applicable for randomly 
distributed spherical inclusions in a medium. The ther- 
mal conductivity equation for the Veinberg model is 

A sensitivity study was performed [8] using five differ- 
ent thermal conductivity models to determine which 
best represents the system. From the temperature dis- 
tribution and solid-liquid interface position data, it 
was found that the Veinberg model gave the best 
agreement for both a water-aluminum and water- 
glass bead system. 
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Method of solution RESULTS AND DISCUSSION 
When solving a moving-boundary heat transfer 

problem numerically, complications arise due to the 
motion of the solid-liquid interface with time. As 
such, the position of the interface is not known apriori 
and the domain over which the energy equations 
are solved varies. Furthermore, there exists a dis- 
continuity in the temperature gradient at the fusion 
front. 

Temperature distributions 

Briefly, the method of solution uses a fixed grid 
system coupled with an implicit time scheme. Murray 
and Landis [12] first proposed a fixed grid method of 
solution. Similarly, a node is specified at the interface 
and the interface position must be determined as it 
progresses through the nodal system. To eliminate the 
inaccuracy introduced by the interpolation or extra- 
polation [ 121, unequal spacing in the computational 
grid on both sides of the interface (which changes with 

time) is used. To handle this unequal spacing, the 
energy equation for the solid and liquid phases are 

finite-differenced by first multiplying by the radius 5 
and then integrating over a unit control volume in 

space [ 131. 
Finite-differencing of the interfacial energy balance 

requires an accurate approximation for the first 
derivative of temperature using the unequal spacing 
at the interface. By twice differentiating a second- 
order polynomial and solving for the first derivative 
(e.g. solid side of the interface), a suitable formula 

was derived which uses the interface node and two 
adjacent nodes on the solid side of the interface. 

Figures 2 and 3 show the variation of temperature 
with time at different radial and axial locations for a 
glass bead diameter of 6.0 and 1.59 mm, respectively. 
Bead size makes a significant difference in the tem- 
perature distributions. The effects of natural con- 
vection become more important as the bead diameter 
increases due to the increasing permeability of the 

porous system (for approximately the same porosity). 
An empirical correlation for the permeability of 
packed beds of the same diameter spheres is given by 
Bear [ 151. Based on the expression for uniform size 
spherical beads, the permeabilities for 1.59, 2.89 and 
6.0 mm diameter glass beads are found to be 
1.60 x lop9 m*, 5.28 x 1O-9 m* and 2.85 x 10e8 m*, 
respectively. Since there appears to be no unique 
characteristic length for a porous medium in which 
the phase-change boundary is moving, the Rayleigh 
number is not given. However, the imposed test cell 
wall temperature is contained in the Stefan number 

(Ste) specified in the figure captions, and therefore the 
Rayleigh number can be calculated for the system. 

Initially (t < 0), there is no solid phase present. 
Assuming that the fusion front velocity is pro- 

portional to the amount of energy removed at the 
cylinder wall, a dimensionless energy balance at the 
wall derived similar to the preceding interfacial energy 

balance yields 

Figure 2 shows that natural convection is very 
important for a bead diameter of 6.0 mm as evidenced 
by the high liquid temperatures at y = 0.84 (upper 
portion of the vertical test cell orientation) which 

approach the wall temperature (0 = 0). The tem- 
peratures increase from the bottom to the top of the 
capsule, and this difference is greater as the melt thick- 
ness increases (radius decreases). This clearly indicates 

that the fluid motion due to natural convection is 
up along the wall and down along the solid-liquid 
interface. Poor agreement between data and the pre- 

This energy balance was used in the numerical sol- 
ution to determine an initial fusion front velocity (i.e. 
solid thickness). After the solid phase is established, 
the interfacial energy balance must be used. The pur- 
pose of the wall energy balance is to initiate the 

numerical solution. 
The independence of the solution on the grid was 

established by performing calculations for different 
grids. The results reported in the paper were obtained 
with a grid of 25 nodal points. The model equations 
were also solved for the limiting case of a homo- 
geneous medium (no porous media, 4 = 1.0). The 
numerical results obtained for the interface position 
were found to be in excellent agreement with numeri- 
cal predictions reported in the literature for melting 
[ 141 assuming that heat transfer in the solid and liquid 
is only by conduction. This established confidence in 
the numerical algorithm employed. 

FIG. 2. Comparison of predicted and measured temperatures 
for melting of ice : glass beads 6.0 mm in diameter, 0, = 1 .O, 

Ste = 0.186. 



Melting of frozen, porous media 1947 

DATA ANALYSIS 

t 7 .aq .S .16 s 

o.ao cl + + ~ 
0.57 (I) x x 
0.36 A 0 z 

a00 

7x100 

FIG. 3. Comparison of predicted and measured temperatures 
for melting of ice : glass beads 1.59 mm in diameter, Bi = 1 .O, 

Ste = 0.185. 

dictions based on the pure conduction heat transfer 
model provide further evidence of the natural con- 
vection effects. Note that natural convection is absent 
initially and the melting is conduction dominated. The 

fluid circulation due to natural convection is con- 
siderably less intense for a bead diameter of 1.59 mm 
(Fig. 3). The temperature difference between the top 
and bottom of the vertical capsule is considerably 
smaller, and agreement between data and predictions 
is better. 

The temperature variation with time for an initially 
subcooled system is shown in Fig. 4. There is good 
agreement for the solid temperatures, and the liquid 
temperatures reveal natural convection effects in the 
melt. Again, natural convection does not appear until 
later times and becomes more dominant as the melt 
thickness increases. 

The effects of natural convection are markedly 
different when the cylinder axis is oriented hori- 
zontally (Fig. 5). There is little variation in the tem- 
perature distributions for the various axial locations, 
with the exception that the water added to the system 
from the reservoir increased the temperature at 
y = 0.84, because the water temperature was warmer 
than that of the wall due to insufficient cooling. This 
results in the difference between the temperatures at 
y = 0.84, 0.5 and 0.16 being smaller (approximately 
equal within the measurement accuracy of the ther- 
mocouples used) than the typical temperature differ- 
ences for a vertically oriented cylinder. The symbol 
T (or top) refers to the thermocouple rakes being 
positioned above the axis of the capsule with the rake 
closest to the wall rotated 15” from the vertical. The 
symbol B (or bottom) means the thermocouple rakes 

I .a00 

0.000 
o.Lm 10.00 20.00 so.00 

T x 100 

FIG. 4. Comparison of predicted and measured temperatures 
for melting of ice for some subcooling of the solid PCM: 

glass beads 2.89 mm in diameter, Bi = 2.145, Ste = 0.185. 

have been rotated 180” from the vertical such that 
they are below the axis of the test cell. As would be 

expected, the liquid temperatures in the upper half of 
the test section are higher than those in the bottom 
half due to the upward motion of the fluid caused by 

the natural convection. 

I .200 

FIG. 5. Comparison of predicted and measured temperatures 
for melting with the test cell oriented horizontally: glass 
beads 2.89 mm in diameter, 0, = 1 .O, Ste = 0.186 with rakes 
at top and Sre = 0.185 with rakes at bottom. (Note: The 
data points indicated on the figure are for thermocouple 
rakes located on the bottom of the test cell. The symbols for 
the data points when the thermocouple rakes are located at 
the top of the test cell are identical to those given in Fig. 4.) 
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The temperature distribution for melting in an ice- 
aluminum bead system is shown in Fig. 6. The analysis 

overpredicts the temperature because the Veinberg 
[1 1] model overestimates the effective thermal con- 
ductivity. Since there is a large difference in the prop- 
erties of the PCM and porous media, the temperature 
variation is markedly different from that of an ice- 
glass bead system. The temperature does not vary as 
smoothly as that for an ice-glass bead system, and the 
difference between the axial temperatures becomes 
smaller as the liquid thickness increases. 

Solid-liquid interface position 
Good agreement between predictions and data for 

the temperature distribution will result in good agree- 
ment for the solid-liquid interface position, since they 
are intimately related. Figure 7 illustrates the variation 
of the melt layer thickness with time for glass beads 

(2.89 mm in diameter) and aluminum beads (3.17 mm 
in diameter). The agreement is much better for the ice- 
glass bead system, because the thermal conductivity of 
the porous media and PCM are similar, but the model 
underpredicts the melting rate. The melting rate of the 
ice-glass bead system is influenced more by natural 
convection than the ice-aluminum bead system. For 
melting, addition of the PCM to the test section has 
no effect if the water is at the same temperature as the 
wall (i.e. it just fills the void formed by the melting of 
ice). As expected from the temperature distributions, 
the local melting rate is slowest at the bottom of the 
vertical capsule and progressively increases upward 
(the top melts the quickest). Due to the high thermal 
conductivity of the aluminum bead, conduction is 
more significant during melting. Note that the top and 

r xl00 

FIG. 6. Comparison of predicted and measured temperatures 
for melting of ice in a vertically oriented capsule : aluminum 

beads 3.18 mm in diameter, Bi = 1.0, Ste = 0.166. 

“’ - 
0.00 w_oc SO.00 80.00 

r400 

FIG. 7. Effect of Stefan number on the liquid layer thickness 
for melting of ice in vertically oriented capsule : glass beads 
2.89 mm in diameter, aluminum beads 3.18 mm in diameter, 

0, = 1.0. 

bottom portions melt at the same rate, and the spread 
in the data is approximately the same (at three of the 
four locations). The model overpredicts the melting 
rate because of the effective thermal conductivity 
model used. 

In both systems, complete melting is quicker for the 
larger Stefan number. Natural convection effects are 
significant for both Stefan numbers for an ice-glass 
bead system. The agreement is better for the smaller 
Stefan number with aluminum beads as the porous 
media (data trend is similar to the shape of the pre- 
dicted curve). The slower melting rate allows the 
system to approach local temperature equilibrium 
between the PCM and the porous media. Conduction- 
controlled melting appears to be dominant for the 
smaller Stefan number, but not to the same extent as 
that for the larger Stefan number. 

The bead size makes a significant difference in the 
melting rate for an ice-glass bead system (Fig. 8). 
Melting is quickest for the larger bead size and slowest 
for the small diameter bead due to the different per- 
meabilities of the porous media as discussed earlier. 
For the larger permeability, the fluid motion is more 
intense because the resistance to flow is smaller. Note, 
the spread in the data is greatest for the large bead 
diameter, which indicates that natural convection 
effects are more important. The beads greatly suppress 
natural convection. Comparison of the model pre- 
dictions with data for melting without porous media 
can be found elsewhere [8]. 

Effects of an initial subcooling of the solid on the 
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T x 100 

FIG. 8. Effect of glass bead diameter on the liquid layer 
thickness for melting of ice in a vertically oriented capsule, 
0,= 1.0, Ste=0.185 for d=1.59 mm, Ste=0.184 for 

d = 2.89 mm and Ste = 0.186 for d = 6.0 mm. 

interface position are shown in Fig. 9. As predicted, 
the initial subcooling slows down the melting rate. 

Due to slightly better agreement between predictions 
and data for an initially subcooled ice, it appears that 
the natural convection effects are not as important 
due to heat addition to the solid required to raise its 
temperature to the fusion temperature. 

1 DATA ANALYSlS t 

0.000 

0.00 IO.00 20 .oo 30.00 w.00 

T~IOO 

FIG. 9. Effect of the initial temperature on the liquid layer 
thickness for melting of ice in a vertically oriented capsule : 
glass beads 2.89 mm in diameter, Ste = 0.184 for Bi = 1.0 

and Ste = 0.185 for 0, = 1.7. 

The test cell orientation has a marked effect on the 
melting rate as shown in Fig. 10. Note that the melting 
rate at y = 0.84 for the horizontal orientations was 
slightly greater than it should be due to the added 
water not being sufficiently cooled to the wall tem- 
perature. For the vertically oriented test cell, the fluid 
temperature increases as the liquid moves up along 
the hot wall and decreases as the liquid flows down 
along the solid-liquid interface due to the natural 
convection circulation. The melting rate is greatest 
at the top of the solid-liquid interface and steadily 
decreases downward. The temperature distribution 
for the horizontally oriented test cell (Fig. 5) shows 
that the melt temperature is larger above the solid, 
which suggests that the fluid motion is from the bot- 
tom to the top of the solid. Due to the different and 
changing length of the solid-liquid interface for each 
orientation that the fluid is exposed to (which cor- 

responds to the amount the fluid is cooled and the 
melting rate), the melting rates for the two orien- 
tations are different along the axis of the test cell. For 
the vertical orientation, the fluid motion is along the 
axis of the capsule. Therefore, the length of the inter- 
face that the fluid is in contact with is approximately 
constant (neglecting the slight curvature due to more 

melting at the top). In contrast for the horizontal 
orientation, the fluid motion is around the circum- 
ference of the solid which continuously decreases 
until the solid is completely melted. Therefore, melting 
is faster at y = 0.84 for the vertically positioned cap- 
sule (compared to the horizontal orientation), and 

FIG. 10. Effect of test cell orientation on the liquid layer 
thickness for melting of ice, glass beads 2.89 mm in diameter, 
0, = 1.0; Sfe = 0.184 for vertical orientation, Ste = 0.186 
for horizontal orientation with rakes on top and Ste = 0.185 

for horizontal orientation with rakes on bottom. 
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melting in the horizontally oriented capsule is faster 
at y = 0.5 and 0.16 (compared to the vertical orien- 
tation). The measured melting rate is greater at later 
times than that predicted based on conduction-con- 
trolled heat transfer for both orientations (natural 
convection becomes more intense). Likewise, the 
difference in the melting rates between the two orien- 
tations becomes greater at later times. 

CONCLUSIONS 

Natural convection plays an important role during 
melting of an ice-porous-media system. Melting 
occurs faster at the top of a vertically oriented cyl- 
indrical capsule due to the fluid circulation, with natu- 
ral convection effects becoming more important as the 
melt thickness increases. The analysis underpredicts 
the melting rate for a water-glass-bead system because 
natural convection was ignored. For a water-alum- 
inum-bead system, the analysis overpredicts the melt- 
ing rate, because the effective thermal conductivity of 
the system was overpredicted, and conduction pre- 
dominates over natural convection. 

The results show that the effective thermal con- 
ductivity model is adequate only for a system in which 
the porous medium and PCM have similar values. If 
the porous medium has a very large thermal con- 
ductivity compared to the PCM, the Veinberg model 
for the effective conductivity is clearly inadequate. 
Furthermore, the assumption that the PCM and 
porous medium are in local temperature equilibrium 
becomes invalid. 

The experimental data show that natural con- 
vection in the liquid affects the temperature dis- 
tribution and the interface shape as well as its motion 
during melting of ice-porous-media systems. Natural 
convection in the liquid needs to be modeled for a 
realistic prediction of temperature distribution and 
melt front motion. Theoretical work is currently under 
way and will be reported in the near future. 
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FUSION DUN MILIEU POREUX GELE CONTENU DANS UNE CAPSULE 
CYLINDRIQUE HORIZONTALE OU VERTICALE 

R&m&La fusion de la glace dans un milieu poreux est etudiee experitalement et analytiquement pour 
une capsule cylindrique horizontale ou verticale. Des resultats quantitatifs de la distribution de temperature 
et du mouvement et de la deformation de l’interface sont obtenus pour la fusion inteme avec differentes 
dimensions et formes de lits de spheres utilises comme milieux poreux. Des previsions d’une analyse 
qui considere la conduction comme le seul mode de transfert thermique sont comparees aux donnees 
experimentales pour montrer que la convection naturelle est sensible. On trouve que la vitesse de fusion 
est augment&e par la convection naturelle dans le liquide. Pour de grandes differences dans la conductivite 
thermique du mat&au qui change d&at et du milieu poreux (ici eau et aluminium), la conductivitt 
thermique effective du systeme n’est pas prevue correctement par le modele utilise, ce qui conduit a un 
&cart entre les don&es experimentales et les previsions. L’hypothese dun equilibre local de temperature 

entre le fluide intersticiel et le milieu poreux devient incorrecte pour le systeme eau-aluminium. 
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SCHMELZEN VON GEFRORENEN, POROSEN STOFFEN 

Zusammenfassung-Der Schmelzvorgang von Eis in einem poriisen Stoff wurde experimentell und analy- 
tisch in einer horizontalen und vertikalen zylindrischen Kapsel untersucht. Die Temperaturverteilung, die 
Wanderungsgeschwindigkeit sowie die Gestalt der Schmelzfront wurden fur den Fall des Abschmelzens im 
Inneren quantitativ ermittelt, wobei unterschiedliche kugelfiirmige Perlen als poriises Material verwendet 
wurden. Analytische Befunde, wonach Warmeleitung den einzigen Transportmechanismus sowohl in der 
Fhissigkeit, als such im Feststoff darstellt, wurden mit den experimentellen Ergebnissen verglichen urn zu 
erkennen, inwiefern natiirliche Konvektion fur den Vorgang bedeutsam ist. Es konnte gezeigt werden, 
da0 die Schmelzrate durch auftretende natiirliche Konvektion zunimmt. Bei groBen Unterschieden der 
Wlrmeleitfahigkeiten von Phasenwechselmateri: 1 und poriisem Material (zum Beispiel Wasser und Alu- 
minium), konnte die effektive Warmeleitfahigkeit des Systems nicht mehr hinreichend genau durch das 
verwendete Model1 beschrieben werden, wodurch sich weitere Abweichungen zwischen Berechnung und 
Versuch ergaben. Desweiteren ist die Annahme eines iirtlichen Temperaturgleichgewichts zwischen 
Hohlraumkomponente und poriisem Medium fur das System Wasser-Aluminiumperlen nicht mehr 

gerechtfertigt. 

IIJIABJIEHHE 3AMOPOxEHHbIX I-IOPRCTbIX CPEA, COAEP)KAIQMXC5I B 
IOPM30HTA_BbHbIX I4 BEPTHKAJIbHbIX IJHJIMH~PM~ECKI4X KAI-ICYJIAX 

AHHOTa4nn-3KCnepeMeHTanbHO I( aHamiTmecKk4 kiccnenyeTcn nnaBneHwe nbna B nopec~oii cpene B 

rOpH30HTanbHbIX I( BepTAKanbHbIX ,,N,HHnpWIeCIU,X KanCynaX. KOnHqeCTBeHHbIe pe3ynbTaTbI "0 paC- 

npeneneHm0 TemepaTypbI, nBmemn0 A +opMe rpaeeu pasnena Tsepnoe Teno-mnKocTb nonyqenbt 
nnn cnyqan BHyTpeHHero nnaBneHm npli pa3nuwbIx pa3Mepax B Tmax c@epmecKex urapuKoB,wno- 

nb3yeMbIx B KaqecTBe nopacToE cpenbI. PacqeTbI,npoeeneHHbIe npH ycnoeee,~ro npoecxoner TonbKo 

FiHiTyKTHBHbIfi ITepeHOC TeWIa B TBepnOM Tene Li XUinKOCTH,CpaBHHBaJlACb C JJaHHbIMB 3KClTepHMeHTa 

LUIK BbIneneHWI Cny'IaeB, KOI-LIa CyIUeCTBeHHOfi CTaHOBWTCIl eCTeCTBeHHaR KOHBeKUWII. HafineHo, ST0 

UHTeHCWBHOCTb IInaB.lIeHBR yBenWI&,BaeTCSI npl, eCTeCTBeHHOfi KOHBeKUAB B XWIIKOCTB. Ecnw TennO- 

IIpOBOnHOCTH CpenbI, B KOTOpOii OCylueCTBJIXlOTCSI Ga30BbIe IIpeBpaIUeHWI, Ei IlOpHCTOrO CKeneTa 

CyIIieCTBeHHO pa3nH'4alOTCR(HaIIpIiMep,BO~a W anIOMHHHfi)3Ha9eHSie 3@@eKTHBHOk Te,,nO~pOBO~OCTW 

CHCTeMbl paCCWTbIBaJIOCb n0 MOlleJIIi C HeKOTOpbIM 3arpy6neHtieM, 'iT0 ITpHBOnHT K naJIbHeihUeMy 

pacxo*neHuw Memay 3KcnepuhieHranbHbwu naHHbwui H pac9eTahui. Eonee ~oro, npennono2cesse 0 
JlOKanbHOM paBHOBeW&i TeMlTepaTyp MeXQy ITyCTOTaMU H IIOpUCTblM CKeneTOM LUISI CHCTeMbI Bona- 

amoMkfHkieBbleUIapuKB yTpaweaeTcnpaseanHeocTb. 


